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Abstract. In the two Higgs doublet model with no additional symmetries in the scalar sector (different from
the gauge and Lorentz symmetries), it is customary to reparameterize the model by rotating the scalar dou-
blets so that one of the vacuum expectation values vanishes. It is well known that the Yukawa sector of the
model is unaffected by such a transformation. Notwithstanding this, since the Higgs potential must also be
transformed, it is necessary to show that such a sector is also unaltered in its physical content. We demon-
strate that the physical content of the potential is invariant even when the charge conjugation symmetry is
demanded.

PACS. 12.60.Fr; 11.30.Er; 11.15.Ex; 11.30.Hv

1 Introduction

One of the simplest extension of the SM is the so called two
Higgs doublet model (2HDM), which consists of adding
a new doublet with the same quantum numbers as the
former. The most studied of this kind of models are the
so called 2HDM type I and 2HDM type II, according to
the discrete symmetry imposed in the scalar sector that
provides different Yukawa couplings in the up and down
sectors. In the model of type I, only one Higgs doublet
gives mass to the up and down sectors; while in the model
of type II one doublet gives mass to the up-type quarks
while the other doublet provides the mass to the down-type
quarks. Since each doublet could acquire a vacuum expec-
tation value (VEV), the presence of two different VEV’s
enables us to explain the hierarchy mass problem in the
third generation of quarks. In the case in which no dis-
crete symmetry is introduced the two doublets can couple
to both types of quarks, generating flavor changing neutral
currents (FCNC); because in this case the mass matrix is
generated by two different matrices which cannot be diago-
nalized at the same time. In this case we talk of 2HDM type
III. In the case of the 2HDM III, it is possible to make a ro-
tation between the two Higgs doublets which is equivalent
to choose a new basis, and the physical content of the La-
grangian remains invariant. This fact permits one to make
a rotation so that one of the VEV’s vanishes.
In general the 2HDM has two CP -even neutral scalar

Higgs bosons (h0,H0) which are mixed through an angle
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denoted as α; two CP -odd scalar fields (A0, G0Z) where
the first correspond to a physical particle and the sec-
ond is a Goldstone boson associated with Zµ; and finally,
two types of charged fields H±, G±W which correspond to
two scalar charged particles and two would be Goldstone
bosons associated with W±. They are mixed through an
angle denoted by β where tanβ = v2/v1 with v1 v2 de-
noting the two VEV’s. However, in the model where one
of the VEV is taken out by the rotation, the would be
Goldstone bosons and scalar bosons do not mix because
they belong to different doublets due to the redefinition
of the coordinate system for the doublets. For the gauge
group SU(N) with them multiplet fundamental represen-
tation which gets the VEV 〈Hi〉 = vi, it is always possible
to rotate the system so that 〈H1〉 = v1 and 〈Hi〉 = 0 with
i = 2, . . . ,m [1]. Recent studies of the invariance of the
physical parameters under such a rotation have been car-
ried out. For instance [3] discusses the independence of the
physical parameters from basis changes in the Lagrangian,
in a more observable oriented manner with an eye on the
minimal supersymmetric standard model. On the other
hand, a more theoretical approach can be seen in [2, 4];
in [2] the most general 2HDM is rewritten in an explicitly
SU (2)-covariant form, while in [4] the invariance is pre-
sented based on group theoretical grounds, viewing the two
Higgs doublets as components of a generic “hyperspinor”.
In summary, in the absence of additional symmetries

(different from the gauge and Lorentz symmetry) in the
scalar sector, we can always choose a basis in which only
one doublet acquires a vacuum expectation value (VEV)
without affecting the physical meaning of the model [1].
This change of basis consists of a unitary transformation
between the two Higgs doublets that cancels one of the
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VEV’s. Nevertheless, the literature usually studies this ro-
tation in the Yukawa sector only. However, even in the case
in which no additional symmetry is taken in the Yukawa
sector, charge conjugation invariance (C-invariance) is as-
sumed in theHiggs potential [5, 6], and since the same choice
of basis must be done in this sector, it is necessary to check
that a change of basis keeps the Higgs potential unaltered
in its physical content. The purpose of the present paper is
to show explicitly that the potential maintains its physical
meaning even when C-invariance is imposed as long as no
additional symmetries in the potential are demanded.

2 Rotation of the Yukawa Lagrangian in the
2HDM type III

We start defining two Higgs doublets with VEV’s:

Φ′1,2 =

( (
φ+1,2
)′(

φ01,2
)′
)
=

( (
φ+1,2
)′

(h1+ v1+ig1)
′

)
;

Φ̃′1,2 = iσ2Φ
′
1,2 ; 〈Φ

′
1,2〉= v

′
1,2 (1)

and writing the Yukawa Lagrangian of the most general
two Higgs doublet model (the so called 2HDM type III)

−LY = η̃
U,0
ij Q

0

iLΦ̃
′
1U
0
jR+ η̃

D,0
ij Q

0

iLΦ
′
1D
0
jR+ ξ̃

U,0
ij Q

0

iLΦ̃
′
2U
0
jR

+ ξ̃D,0ij Q
0

iLΦ
′
2D
0
jR+lepton sector+h.c. , (2)

where Q0iL denotes the left-handed quark doublets with i
the family index, and U0jR, D

0
jR correspond to the right-

handed singlets of up-type and down-type quarks respec-
tively. The superscript “0” means that we are dealing with
gauge eigenstates. Finally, η̃U,0ij , ξ̃

D,0
ij correspond to the

Yukawa vertices giving in general a mixing among families.
We can make a rotation between the doublets,(

Φ1
Φ2

)
≡

(
cos θ sin θ
− sin θ cos θ

)(
Φ′1
Φ′2

)
(3)

and define some new rotated Yukawa couplings,(
η
(U,D),0
ij

ξ
(U,D),0
ij

)
=

(
cos θ sin θ
− sin θ cos θ

)(
η̃
(U,D),0
ij

ξ̃
(U,D),0
ij

)
. (4)

We shall deal with the quark sector only since the re-
sults for the lepton sector will be straightforward. In terms

of Φ1, Φ2, η
(U,D),0
ij and ξ

(U,D),0
ij the Yukawa Lagrangian

could be rewritten as

−LY = Q
0

iLη
U,0
ij Φ̃1U

0
jR+Q

0

iLη
D,0
ij Φ1D

0
jR+Q

0

iLξ
U,0
ij Φ̃2U

0
jR

+Q
0

iLξ
D,0
ij Φ2D

0
jR+h.c. ,

with the same form as the original Lagrangian if we forget
the prime notation. Consequently, the combined rotations
(3) and (4) do not have physical consequences since they
are basically a change of basis. In particular we can choose
θ = β where tanβ ≡ v′2/v

′
1 so that

〈Φ1〉= cosβ〈Φ
′
1〉+sinβ〈Φ

′
2〉=

√
v′21 + v

′2
2 ≡ v ,

〈Φ2〉=− sinβ〈Φ
′
1〉+cosβ〈Φ

′
2〉= 0 . (5)

In this case we managed to get 〈Φ2〉 = 0. Since this La-
grangian contains exactly the same physical information as
the first one, we conclude that in model type III the param-
eter tanβ is totally spurious, and we can assume without
any loss of generality that one of the VEV’s is zero.
On the other hand, it is possible to reverse the steps

above and start from the representation in which 〈Φ2〉= 0
(the “fundamental representation”) and make a rotation of
the Higgs doublets from which the tanβ parameter arises.
Although these rotations provide a spurious parameter
(tanβ), they have the advantage of making the comparison
between the model type II with the model type III more ap-
parent [7], and the same for the comparison between model
type I and type III. It is important to emphasize that the

mixing matrices η
(U,D),0
ij , ξ

(U,D),0
ij depend explicitly on the

tanβ parameter; thus, they are basis dependent. Never-
theless, it can be explicitly shown that the whole of the
couplings are basis independent [8] as expected.
We should emphasize that the invariance of the La-

grangian (2) under the rotation (3) requires no additional
symmetries to be imposed in such a Lagrangian. Notwith-
standing this, even when the Lagrangian (2) is left in the
most general form it is customary to impose a C-invariance
in the Higgs potential, and since the rotation (3) must be
applied to such a potential as well, we should check that the
transformation described by (3) still leaves the potential
unaltered in its physical content.

3 Rotation in the Higgs potential

After examining the rotation in the Yukawa sector, we shall
see how this transformation changes the parameters in the
potential,andshowthatthephysicalcontentofthepotential
remains intact. For this we should examine the physical pa-
rametersof themodelandshowthat theyarebasis invariant.

3.1 Transformation of the parameters in the potential

Let us start from an arbitrary parameterization in which
both VEV’s are in general different from zero. The most
general renormalizable and gauge invariant potential reads

Vg = − µ̃
2
1Â
′− µ̃22B̂

′− µ̃23Ĉ
′− µ̃24D̂

′+ λ̃1Â
′2+ λ̃2B̂

′2

+ λ̃3Ĉ
′2+ λ̃4D̂

′2+ λ̃5Â
′B̂′+ λ̃6Â

′Ĉ′+ λ̃8Â
′D̂′

+ λ̃7B̂
′Ĉ′+ λ̃9B̂

′D̂′+ λ̃10Ĉ
′D̂′ , (6)

where we have defined the four independent gauge invari-
ant hermitian operators

Â′ ≡ Φ′†1 Φ
′
1 , B̂

′ ≡ Φ′†2 Φ
′
2,

Ĉ′ ≡
1

2

(
Φ′†1 Φ

′
2+Φ

′†
2 Φ
′
1

)
=Re

(
Φ′†1 Φ

′
2

)
,

D̂′ ≡−
i

2

(
Φ′†1 Φ

′
2−Φ

′†
2 Φ
′
1

)
= Im

(
Φ′†1 Φ

′
2

)
. (7)
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In Sect. 2 we showed that the rotation described by (3)
can be done without changing the physical content of the
Yukawa Lagrangian. In order to show the invariance of the
physical content in the scalar potential, we shall calculate
the way inwhich the parameters µ̃i, λ̃i transformunder this
rotation. First, we calculate the way in which the operators
Â′, B̂′, Ĉ′, D̂′ transform. Taking into account (3) we get

Â′ ≡ Φ′†1 Φ
′
1 =
(
Φ†1 cos θ−Φ

†
2 sin θ

)
(Φ1 cos θ−Φ2 sin θ)

= Φ†1Φ1 cos
2 θ−2 cos θ sin θ

(
Φ†1Φ2+Φ

†
2Φ1

2

)

+Φ†2Φ2 sin
2 θ

= Â cos2 θ+ B̂ sin2 θ− sin 2θĈ ,

and we obtain the transformations for the other operators
in a similar way, the results reading

Â′ = Â cos2 θ+ B̂ sin2 θ− Ĉ sin 2θ ,

B̂′ = Â sin2 θ+ B̂ cos2 θ+ Ĉ sin 2θ ,

Ĉ′ =
1

2
Â sin 2θ−

1

2
B̂ sin 2θ+ Ĉ cos 2θ ,

D̂′ = D̂ ,

Â′2 = Â2 cos4 θ+ B̂2 sin4 θ+ Ĉ2 sin2 2θ+
1

2
ÂB̂ sin2 2θ

−2ÂĈ sin 2θ cos2 θ−2B̂Ĉ sin2 θ sin 2θ ,

B̂′2 = Â2 sin4 θ+ B̂2 cos4 θ+ Ĉ2 sin2 2θ+
1

2
ÂB̂ sin2 2θ

+2ÂĈ sin 2θ sin2 θ+2B̂Ĉ sin 2θ cos2 θ ,

Ĉ′2 =
1

4

(
Â2+ B̂2

)
sin2 2θ+ Ĉ2 cos2 2θ−

1

2
ÂB̂ sin2 2θ

+
1

2
ÂĈ sin 4θ−

1

2
B̂Ĉ sin 4θ ,

D̂′2 = D̂2 ,

Â′B̂′ =

(
1

4
Â2+

1

4
B̂2− Ĉ2

)
sin2 2θ+ ÂB̂

(
cos4 θ+sin4 θ

)
+
(
ÂĈ− B̂Ĉ

)
sin 2θ cos 2θ ,

Â′Ĉ′ =
1

2
Â2 sin 2θ cos2 θ−

1

2
B̂2 sin2 θ sin 2θ

− Ĉ2 sin 2θ cos 2θ−
1

4
ÂB̂ sin 4θ

+ ÂĈ
(
4 cos2 θ−3

)
cos2 θ

+ B̂Ĉ
(
4 cos2 θ−1

)
sin2 θ ,

Â′D̂′ = ÂD̂ cos2 θ+ B̂D̂ sin2 θ− ĈD̂ sin 2θ ,

B̂′Ĉ′ =
1

2
Â2 sin 2θ sin2 θ−

1

2
B̂2 sin 2θ cos2 θ+

1

2
Ĉ2 sin 4θ

+
1

4
ÂB̂ sin 4θ+ ÂĈ

(
cos 2θ+2 cos2 θ

)
sin2 θ

+ B̂Ĉ
(
cos 2θ−2 sin2 θ

)
cos2 θ ,

B̂′D̂′ = ÂD̂ sin2 θ+ B̂D̂ cos2 θ+ ĈD̂ sin 2θ ,

Ĉ′D̂′ =
1

2

(
ÂD̂− B̂D̂

)
sin 2θ+ ĈD̂ cos 2θ . (8)

Now, we can build up a new parameterization of the po-
tential so that

Vg =−µ
2
1Â−µ

2
2B̂−µ

2
3Ĉ−µ

2
4D̂+λ1Â

2+λ2B̂
2+λ3Ĉ

2

+λ4D̂
2+λ5ÂB̂+λ6ÂĈ+λ8ÂD̂+λ7B̂Ĉ

+λ9B̂D̂+λ10ĈD̂ ; (9)

in order to find the values of µi, λi in terms of µ̃i, λ̃i, we
use (6) and (8) to write e.g. the coefficient proportional to
the operator Â. These terms are compared with the term
proportional to the operator Â in (9) obtaining

−µ21Â=
(
−µ̃21 cos

2 θ− µ̃22 sin
2 θ− µ̃23 sin θ cos θ

)
Â ;

therefore, the coefficient µ21 is related to the parameters
µ̃i, λ̃i in the following way:

µ21 =

(
µ̃21 cos

2 θ+ µ̃22 sin
2 θ+

1

2
µ̃23 sin 2θ

)

by the same token, the other sets of the parameters
µi, λi are related to the µ̃i, λ̃i parameters in the following
way:

µ21 =

(
µ̃21 cos

2 θ+ µ̃22 sin
2 θ+

1

2
µ̃23 sin 2θ

)
,

µ22 =

(
µ̃21 sin

2 θ+ µ̃22 cos
2 θ−

1

2
µ̃23 sin 2θ

)
,

µ23 =
(
−µ̃21 sin 2θ+ µ̃

2
2 sin 2θ+ µ̃

2
3 cos 2θ

)
, µ24 = µ̃

2
4 ,

λ1 = λ̃1 cos
4 θ+ λ̃2 sin

4 θ+
1

4

(
λ̃3+ λ̃5

)
sin2 2θ

+
1

2

(
λ̃6 cos

2 θ+ λ̃7 sin
2 θ
)
sin 2θ ,

λ2 = λ̃1 sin
4 θ+ λ̃2 cos

4 θ+
1

4

(
λ̃3+ λ̃5

)
sin2 2θ

−
1

2

(
λ̃6 sin

2 θ+ λ̃7 cos
2 θ
)
sin 2θ ,

λ3 =
(
λ̃1+ λ̃2− λ̃5

)
sin2 2θ+ λ̃3 cos

2 2θ

+
1

2

(
λ̃7− λ̃6

)
sin 4θ ,

λ4 = λ̃4 ,

λ5 =
1

2

(
λ̃1+ λ̃2− λ̃3

)
sin2 2θ+ λ̃5

(
cos4 θ+sin4 θ

)
+
1

4

(
λ̃7− λ̃6

)
sin 4θ ,

λ6 = 2
(
λ̃2 sin

2 θ− λ̃1 cos
2 θ
)
sin 2θ+

1

2

(
λ̃3+ λ̃5

)
sin 4θ

+ λ̃6
(
4 cos2 θ−3

)
cos2 θ+ λ̃7

(
cos 2θ+2 cos2 θ

)
sin2 θ ,

λ7 = 2
(
λ̃2 cos

2 θ− λ̃1 sin
2 θ
)
sin 2θ−

1

2

(
λ̃3+ λ̃5

)
sin 4θ

+ λ̃6
(
4 cos2 θ−1

)
sin2 θ+ λ̃7

(
cos 2θ−2 sin2 θ

)
cos2 θ ,

λ8 = λ̃8 cos
2 θ+ λ̃9 sin

2 θ+
1

2
λ̃10 sin 2θ ,

λ9 =

(
λ̃8 sin

2 θ+ λ̃9 cos
2 θ−

1

2
λ̃10 sin 2θ

)
,

λ10 =
[(
λ̃9− λ̃8

)
sin 2θ+ λ̃10 cos 2θ

]
. (10)
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3.2 Tadpoles

From now on, we shall consider the potential with in-
variance under charge conjugation [6]. Under this trans-
formation, a Higgs doublet Φi of hypercharge 1 trans-
forms as Φi → eiαiΦ∗i where the parameters αi are ar-
bitrary [6]. Consequently, under charge conjugation we

obtain Φ†iΦj → e
i(αj−αi)Φ†jΦi. In particular, if we choose

αi = αj the operator D̂ defined by (9) and (7) reverse
sign under C-conjugation, while the other operators are
invariant1. Therefore, imposition of C-invariance leads to
µ4 = λ8 = λ9 = λ10 = 0 in the potential (9). However, no
other discrete or continuous symmetry is assumed. In that
case the tadpoles are given by

T = T3h1+T7h2

where

T3 ≡−µ
2
1v1−

1

2
µ23v2+λ1v

3
1+
1

2
λ3v1v

2
2+
1

2
λ5v1v

2
2

+
3

4
λ6v

2
1v2+

1

4
λ7v

3
2 ,

T7 ≡−µ
2
2v2−

1

2
µ23v1+λ2v

3
2+
1

2
λ3v

2
1v2+

1

2
λ5v

2
1v2

+
1

4
λ6v

3
1+
3

4
λ7v

2
2v1 , (11)

and these tadpoles coincide with the minimum conditions,
applying µ4 = λ8 = λ9 = λ10 = 0. Now, we find the relation
among the tadpoles in both parameterizations by using
(11), and (1) and (3). We have

T3h1+T7h2 = T3 (h
′
1 cos θ+h

′
2 sin θ)

+T7 (−h
′
1 sin θ+cos θh

′
2)

= (T3 cos θ−T7 sin θ)h
′
1

+(T3 sin θ+T7 cos θ)h
′
2

= T ′3h
′
1+T

′
7h
′
2 ,

from which we see that the tadpoles in both parameteriza-
tions are related through the rotation(

T ′3
T ′7

)
≡

(
cos θ − sin θ
sin θ cos θ

)(
T3
T7

)
. (12)

As a proof of consistency, we can check that from (11), and
from (10)) the following relations are obtained after a bit of
algebra:

T3 cos θ−T7 sin θ =−µ̃
2
1v
′
1−
1

2
µ̃23v

′
2+ λ̃1v

′3
1 +
1

2
λ̃3v

′
1v
′2
2

+
1

2
λ̃5v

′
1v
′2
2 +
3

4
λ̃6v

′2
1 v
′
2+
1

4
λ̃7v

′3
2 ,

1 Of course, we could have chosen αi−αj =±π, in which case

the operator ̂C = Re
(

Φ
†
1Φ2

)

is the one that violates charge

conservation. Additionally, any other choice for αi−αj is pos-
sible, and in general no parameter vanishes. However, taking
into account that these phases must be fixed (though arbi-
trary), C-invariance would impose relations among the coeffi-
cients so that the number of free parameters is always the same
(for instance µ3 and µ4 would not be independent any more).

T3 sin θ+T7 cos θ =−µ̃
2
2v
′
2−
1

2
µ̃23v

′
1+ λ̃2v

′3
2 +
1

2
λ̃3v

′2
1 v
′
2

+
1

2
λ̃5v

′2
1 v
′
2+
1

4
λ̃6v

′3
1 +
3

4
λ̃7v

′2
2 v
′
1 ,

(13)

where (
v′1
v′2

)
≡

(
cos θ − sin θ
sin θ cos θ

)(
v1
v2

)
(14)

relates the VEV’s between both parameterizations2. From
(12) and (13) we get

T ′3 =−µ̃
2
1v
′
1−
1

2
µ̃23v

′
2+ λ̃1v

′3
1 +
1

2
λ̃3v

′
1v
′2
2 +
1

2
λ̃5v

′
1v
′2
2

+
3

4
λ̃6v

′2
1 v
′
2+
1

4
λ̃7v

′3
2 ,

T ′7 =−µ̃
2
2v
′
2−
1

2
µ̃23v

′
1+ λ̃2v

′3
2 +
1

2
λ̃3v

′2
1 v
′
2+
1

2
λ̃5v

′2
1 v
′
2

+
1

4
λ̃6v

′3
1 +
3

4
λ̃7v

′2
2 v
′
1 , (15)

and comparing with (11) we see that the form of the tad-
pole is preserved by changing the original parameters with
the prime parameters.
Finally, it can be checked that when one of the VEV

vanishes, its corresponding tadpole vanishes as well; this is
an important requirement to preserve the renormalizabil-
ity of the theory [10].

3.3 Higgs boson masses

Another important proof of consistency is to verify that
both parameterizations predict the same masses for the
Higgs bosons. We shall use once again the potential with
C-invariance. In a general parameterization, the minimal
conditions are reduced to

µ1v1 =
(
−
1

2
µ3v2+λ1v

3
1+
1

2
λ3v

2
2v1+

1

2
λ5v

2
2v1

+
3

4
λ6v

2
1v2+

1

4
λ7v

3
2

)
,

µ2v2 =
(
−
1

2
µ3v1+λ2v

3
2+
1

2
λ3v

2
1v2+

1

2
λ5v

2
1v2+

1

4
λ6v

3
1

+
3

4
λ7v1v

2
2

)
;

the mass matrix is obtained by using once again µ4 = λ8 =
λ9 = λ10 = 0. Let us start with the matrix elements corres-
ponding to the scalar Higgs bosonsmH0 ,mh0 . If we assume
that both VEV’s are different from zero and utilize the
minimum conditions, we obtain the following mass matrix:(

M233 M237

M237 M277

)
, (16)

2 Observe that such a rotation leaves invariant the quantity

v21+v
2
2 = v

′2
1 +v

′2
2 =

2m2w
g2
, as it should.
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with

M233 =
1

4v1

(
2µ23v2+8λ1v

3
1+3λ6v

2
1v2−λ7v

3
2

)
,

M237 =−
1

2
µ23+

3

4
λ7v

2
2+
3

4
λ6v

2
1+λ3v1v2+λ5v1v2 ,

M277 =
1

4v2

(
2µ23v1+8λ2v

3
2−λ6v

3
1+3λ7v

2
2v1
)
. (17)

For the sake of simplicity, we just show that the determi-
nant of this matrix (i.e. the product of the squaredmasses),
coincides for two parameterizations connected by a trans-
formation like (3). Themassmatrix in any other parameter-
ization with both VEV’s different from zero, has the same
form as (16) and (17), but replacing µ2i → µ̃

2
i , λi→ λ̃i. It is

a matter of cumbersome algebra to demonstrate that

M233M
2
77−
(
M237
)2
= M̃233M̃

2
77−
(
M̃237

)2
.

This demonstration is carried out by taking into account
the relations (10) among the parameters in both bases. In
a similar fashion, we can show that the eigenvalues coin-
cide in both bases. Therefore, the Higgs boson masses are
equal in both parameterizations as they must. Finally, if
the angle of rotation is chosen such that one of the VEV’s
is zero, (e.g. v2 = 0) in one of the bases, then the minimum
conditions and mass matrix elements become much sim-
pler, and the equality is easier to demonstrate.
By the same token, we can check that for the other

Higgs mass matrices the determinants and eigenvalues are
invariant under the transformation (3), showing that the
observables are not altered by this change of basis.

4 VEV with complex phases

If we assume that one of the VEV in the prime basis (say
v′2) acquires a complex phase, we can eliminate this VEV
by making a complex rotation. However, even if we start
with real parameters in the potential of the prime parame-
terization, after the complex rotation some of these param-
eters acquire complex values in the new parameterization.
In that case the change of basis has translated the CP
violation sources from the VEV to the parameters of the
potential. In other words the original spontaneous CP vi-
olation has been transformed into an explicit violation of
such a symmetry.

5 Conclusions

The simplest extension of the standard model is the so
called two Higgs doublet model. This is a model well moti-
vated fromboth theoretical and phenomenological points of
view [5]. For such a model, it is customary (in the absence
of additional symmetries) to make a rotation in order to get
rid of one of the vacuum expectation values. The literature
has discussed this rotation in the framework of the Yukawa
sector. However, it is important to check that the physical

content of the potential also remains invariant under the
transformation made in the Yukawa sector, especially be-
cause a charge conjugation invariance in the potential is de-
manded evenwhen no additional symmetries in theYukawa
sector are demanded. We show by finding the transform-
ation in the parameters of the potential that the physical
content of the potential remains invariant even when C-
invariance is demanded. Suchan invariance is demonstrated
by examining the tadpoles and the physical spectrum of the
Higgs sector, and showing their invariance under the trans-
formation described above. In particular, it is worthwhile
emphasizing that when one of the VEV’s is null, the corres-
ponding tadpole also vanishes, and this feature is essential
to preserve the renormalizability of the theory.
On the other hand, we can realize that the models type

I and II have a remarkable difference with respect to the
model type III, since it is well known that the former two
ones are highly dependent on the tanβ parameter, while
the latter is not. We can see the difference from the point
of view of symmetries: the 2HDM is constructed in such
a way that we make an exact “duplicate” of the SM Higgs
doublet. These doublets have the same quantum num-
bers and are consequently indistinguishable (at least at
this step). Owing to this indistinguishability we can per-
form the rotation described above without any physical
consequences (it is in fact a change of basis). It means
that the model is invariant under a global SO(2) trans-

formation of the “bidoublet” (Φ1 Φ2)
T
. However, it is very

common to impose a discrete symmetry on the Higgs dou-
blets (Φ1→ Φ1, Φ2→−Φ2) [9] or a global U (1) symme-

try
(
Φ1→ Φ1, Φ2→ eiϕΦ2

)
[6] to prevent dangerous flavor

changing neutral currents or to study the Higgs sector of
some new physics scenarios such as the minimal supersym-
metric standard model. In that case, we are introducing
a distinguibility between the doublets, because they ac-
quire very different couplings to the fermions (models type
I and II). Of course, we could have defined the symmetry in
the opposite way, (Φ1→−Φ1, Φ2→ Φ2), but once we have
chosen one of them, we cannot interchange Φ1↔ Φ2 any-
more without changing the physical content. Such a fact
breaks explicitly the SO(2) symmetry of the “bidoublet”.
On the other hand, it is precisely this symmetry what al-
lows us to absorb the tanβ parameter, and since models
type I and II do not have that symmetry, we are not able to
absorb it properly.
There is another interesting way to see why the rotation

canbecarriedoutwhenC-invariance is imposedwhile itcan-
not be applied in the case of imposing a discrete symmetry.
C-invariance (inacertainbasis) requires thevanishingof the
parametersµ24, λ8, λ9, λ10;however,(10)showsthatsuchpa-
rameters only transform among themselves i.e. the subset

µ24, λ8, λ9, λ10 iswritten intermsofthesubset µ̃
2
4, λ̃8, λ̃9, λ̃10.

Such transformations also show that if the subset in a cer-
tain basis vanishes, the corresponding subset in any other
basisvanishesaswell.Bycontrast, thediscrete symmetryre-
quires the vanishing of the subset µ23, µ

2
4, λ6, λ7, λ8, λ9, but

the elements of this subset do not transform among them-
selves as (10) shows, fromwhichwe see that this symmetry is
not (in general) preservedby the rotation.
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Finally, when we consider a phase in a VEV and make
a complex rotation that eliminates such a VEV, the change
of basis translates the source ofCP violation from the VEV
to the parameters of the potential. Itmeans that the original
spontaneous violation of CP has become an explicit viola-
tion of such a symmetry when the basis is changed.
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